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DEVELOPMENT OF THREE-DIMENSIONAL PERTURBATIONS IN RAYLEIGH-- 

TAYLOR INSTABILITIES 

Yu. M. Davydov and M. S. Pantaleev UDC 532.517.4 

The study of the Rayleigh--Taylor instability (RTI) is a quite relevant problem. Besides 
the theoretical interest, it is valuable for a number of important practical problems, such 
as stability studies of shell compression in problems of laser thermonuclear synthesis, ob- 
taining superstrong magnetic fields, etc. 

The following clearly expressed stages can be traced in the evolution of RTI: linear, 
intermediate, regular asymptotic, and turbulent [i, 2]. The linear stage is characterized 
by a small amplitude a in comparison with the perturbation wavelength L and an exponential 
velocity growth. When the perturbation amplitude a reaches 0.4L, the process evolves to a 
stage intermediate between the linear and the regular asymptotic one. At the regular asymp- 
totic stage, starting at a = 0.75L, heavy fluid "pea'ks" are definitely formed, breaking down 
with constant acceleration, as well as light fluid "bubbles," floating with constant velocity. 
This RTI is unstable [1, 2] and changes into the turbulent stage, during which there is in- 
tense interaction of various wavelength perturbations and fluid mixing. 

The RTI was investigated in most detail for a planar surface section and a ratio of 
heavy to light fluid densities tending to infinity. The linear stage was studied in clas- 
sical papers [3-5], the regular asymptotic stage in [6-8], a phenomenological theory of the 
turbulent stage was developed in [9], and a discussion of the mechanism of its formation was 
given in [2]. 

An analytical mathematical apparatus for analysis is hardly available, however, since 
experimental studies of RTI are quite difficult. The most complete information can be ob- 
tained from numerical calculations; thus, the case of a free surface was investigated in [i0], 
that of two incompressible fluids in [ll], and that of two compressible media in [12]. We 
also point out [13], where numerical calculations of RTI of a compressible shell were per- 
formed. 

So far only the two-dimensional case was considered both analytically and computationally. 
The two-dimenslonal model is, however, physically inadequate: in a physical experiment the t-~o- 
dimensional structures are destroyed by the transverse shortwave instability, transforming 
into three-dimenslonal ones. 

The numerical methods used in [i0, Ii] can be extended, in principle, to the three-dlmen- 
slonal case. This leads, however, to a quite significant increase in the computing time and 
an increase in the required computer memory, so that detailed calculations cannot be realized 
on contemporary computers. 

In the present paper we perform a numerical experiment on three-dimensional RTI by means 
of the coarse particle method (see, e.g., [14]), widely recommended in solving a wide class 
of complex problems of gas hydrodynamics (sac, e.g., [14, 15]). The development of two- 
dimensional RTI up to large amplitudes, when the process becomes substantially nonlinear, was 
first investigated by the given method in [12]. 

The full spatial three-dimensional nonstationary system of vortex Ruler equations with 
account of a gravitational field is solved by the coarse particle method 
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Fig. 1 

Op/Ot ~ div (pW) = O, 

Opu/at + div (puW) ~ 8p/Ox = O~ 

opWot + div ~vW) + ap/oy + pg = o~ ( l )  
Opw/St + div(pwW) + 8p/Oz = O~ 

OpE/Ot + div (pEW) + div (pW) -~ pgo = O~ 

where W = {u, v, w} is the velocity vector; ~, medium density; E = �9 + We/2, specific total 
energy; e, specific internal energy; p, pressure; and the free-fall acceleration g is directed 
along the y axis. 

The programming of the given numerical experiment was carried out within the package of 
the applied KRUCHA (coarse particle) programs [16], to which modules reflecting the specific 
problem (gravitation, initial data) were added. We point out that though as a closure equa- 
tion of system (1), one uses the equation of state of an ideal gas e = p/(~ --1)p (w is the 
adiabatic index), the compressibility has little effect on the nature of the process (the 
Mach number value in the calculation region never exceeds 0.3). 

The calculation is straightforward without separating the contact surface of the heavy 
and light fluids. The two-dimensional calculations have shown that despite the "smearing" of 
the contact surface of separation (7-8 cells in the "peak" region, and 4-5 cells in the "bub- 
ble" region), it can be identified with sufficient accuracy with a surface on which p = 0.5 • 
(p~ + pa), where pa is the heavy fluid density and Pl is that of the light one (a definition 
of this surface by other heuristic properties, such as max grad p, etc., gives closely related 
results). Two-dimensional test problems were calculated in order to compare with data 
of other authors by using the three-dimenslonal program. The initial data and test param- 
eters were identical to those used in [ll], except that the medium was treated with the equa- 
tion of state of an ideal gas. Due to the smallness of the Mach number in the range of cal- 
culation, the compressibility is low in the present case, and therefore acomparison is pos- 
sible with the calculated flow of an incompressibl e fluid. Below we present some of the re- 
sults obtained. The sizes of the calculating regions were 20 cells along the horizontal x 
axis and 60 along the vertical y axis. At all boundaries symmetry conditions were imposed, 
so the mass, momentum, and energy flows at the region boundaries vanished. Since at the 
upper and lower boundaries V ~ O, we have by the equation for the vertical momentum component 
Bp/~y + pg = 0. This boundary condition was imposed on the upper and lower boundaries to 
eliminate the possibility of perturbation generation on them. The initial data were assigned 
at the moment of time t = 0: in the upper half-spacewe have the heavy fluid with density Oa, 
and in the lower half the light one with density p: = 0.i. On the medium boundaries ea/(~ -- 
i) = i0, e,/(x -- i) = i00, and in both media ~e/~y ='-E. Thus, at the initial moment ~p/~y + 
pg = O, and the evolution of instability occurs from the equilibrium position. The initial 
perturbation was given in the form of a velocity field: 

u = A s m - - E [ 2 H ( y )  - -  il exp 
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Fig. 2 

Fig. 3 

where H(y) is the Heaviside function 

{~ y>0, 

(~') = y < o,  

and L is the transverse size of the region. In units made dimensionless L = 2, g = i, A = 
0.78, 6x = ~y = 0.1. Here ~x and ~y are the sizes of the calculation cells along the x and y 
axes, respectively. We note that for a given initial perturbation in calculations with com- 
pressible media, it is possible to satisfy the condition div W = 0 everywhere except the sur- 
face of separation. Otherwise, density perturbations occur which can affect the pattern of 
RTI development. 

Two-dimenslonal calculations by the method of coarse particles showed good agreement with 
[ii]. Figure la shows the shape of the c6ntact surface for ~a/P, = I0 at different moments of 
time (0.25; 0.49; 0.73; 0.97; 1.21); the solid lines correspond to calculations by the method 
of coarse particles, and the dashed lines are the calculations of [ii]. The plot of velocity 
motion of the "peak" is also near that given in [ii], and the mean "peak" acceleration, as in 
[Ii], is approximately the total acceleration of the gravity force. The ratio of the "bubble" 
radius of curvature to the perturbation wavelength R/2L was 0.40, which is closer to the value 
of 0.39 given in [I0] andto the theoretical value 0.35 [6] than 0.48 in [ii]. The rise 
velocity of the "bubble" is somewhat higher than in [Ii]. The value obtained by us is 

(P~- Pl ~-i/2 
uB \~gR)___ = 0.44, that of [ii] is 0.32, and the theoretical value for this quantity is 

~0.5 [7]. 

We note that despite the "smearing" of the contact surface, the method of coarse parti- 
cles also makes it possible to follow the evolution of Kelvin--Helmholtz instability for small 
values of p~/p,. Figure ib shows the form of the contact surface for pz/p~ = 2 at the moments 
of time 0.45; 0.89; 1.34; 1.79. 

We turn now to consider results of numerical modeling of three-dimensional RTI by the 
method of coarse particles. The sizes of the calculated regions were 20, 60, and 20 cells 
along the x, y, and z axes, respectively. In this case the mesh parameters were ~x = 6y = dz. 
In the three-dimensional case the perturbation surface of separation can be formed either by 
hexagonal or quadratic lattices [17]. In the present paper we selected the latter case 
(there is no difficulty in modeling a hexagonal lattice). For its realization the initial 
perturbation was given in the form 

As~n~cos- t~- [2H(y)  l ]ex - / - 2 ~ [ y [ h ,  

v = A COSL e o s ~  exp (--221Yl), 

u~ = A cos -L- sm -L- [2H (g) --  1 ] exp t - - Z ~ / "  
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Fig.  5 

Fig.  6 

In the remaining discussion all initial, boundary conditions, and problem parameters were the 
same as in the two-dimensional case. 

Figures 2-5 give the surfaces of separation in perspective projection, constructed at the 
successive moments of time t = 0.6; 0.9; 1.2; 1.5, respectively. Clearly seenarethe"buoyancy" 
of wide "bubbles" and the "breakdown" of sufficiently narrow "peaks." 

We note that the "high" (sizes on the y azis) "bubbles" and "peaks" in Figs. 2-5 are 
indeed nonunique. This is explained by the fact that the point of the separation surface with 
coordinates x = z = ~/2L, y = 0, at which initially u = v = w = 0, moves below with an accel- 
eration approximately equal to half the "peak" acceleration. A more precise idea on the 
nature of the process is given by Fig. 6, in which are shown the cross sections of the con- 
tact surfaces in the planes x = 0 (z = 0) and x = z, x = --z at the moment of time t - 1.5. 

The ratio of "bubble" radius of curvature to the perturbation wavelength R/2L is 0.34 
at the cross sections x - 0 and z - O, and 0.31 at the cross section x - z. The theoretical 
and experimental values of this quantity, obtained in studying the rise of air bubbles in 
vertical tubes filled by a liquid, are 0.35 [18].. The dimensionless velocity of "bubble" 
rising UB(2Lg) -I/I was 0.31 -+ 0.02, while according to the data of [18], for cylindrical 
tubes it is 0.32, while for tubes of rectangular cross section with lateral side ratio 1:4 
it is 0.29. The "peak" acceleration was ~20% larger than in the two-dimensional case, while 
the-"peak" itself was somewhat wider. 
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